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A method of surfaces of discontinuity is used to obtain expressions for veloci- 
ties and attenuations of thermoelastic waves propagating in a semibounded 
medium with thermal memory. 

A wide variety of thermophysical and mechanical properties of materials presently syn- 
thesized require for their description the usage of new representations that take into account 
the prehistory of the materials. The same is also required for describing the behavior of 
ordinary materials under extreme conditions, for example, materials undergoing intensive high- 
speed processes and materials at low temperatures. Therefore, a thermodynamic theory of ma- 
terials accounting for thermal memory has attracted increasing attention recently as an ef- 
fective method for describing a wide class of real media. 

In this work, the wave modes of propagation of thermoelastic perturbations are considered 
in the framework of a linearized coupled theory of thermoelasticity for isotropic media with 
allowance for thermal memory [I]. The determining relations for the thermal flux qz, internal 
energy e, and stresses ozz are of the form 

i qz(z, t ) = q = .  r s) ds, (1) 
0 

i e (z, t) = e : eo @ cvO (z, t) - -  [~' (s) Ot (Z, S) ds @ • (z, t), 
0 

azz (z, t) = ~ = (2• @ ~)  u,z (z, t) -- • (z, t) -- ~" (s) ~l (z, s) ds, 
0 

( 2 )  

(3) 

where @ = (T - T0)/T0 << i; E = u,z << i. 

Relaxation functions ~(t), ~(t), and ~(t), defined on the interval t C [0, ~), are differ- 
entiable functions equal to zero at infinity. 

The complete histories of the temperature @t and the temperature gradient~are defined as: 

$ 

if(Z, S)= .i it(z, s )=ds ,  s~[O, ~),  (4)  
0 

ff (z, s) = / (z, t - -  s), s C 1o, ~ ) .  
( 5 )  

Below, for an analysis of the propagation of thermoelastic waves we use an approach in 
which a wave is considered as a surface of discontinuity of thermodynamic quantities. 

Assume that at the moment of time t, the position of the surface of discontinuity is 
determined by the coordinate z = Y(t) with the velocity of the motion of the surface being 
equal to un = dY(t)/dt. The discontinuity of the function f(z, t) is designated by square 
brackets and is defined as: 
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If(t)] = [ -  (t) - -  f +  (t)  = lira f (z, t) - -  lira f (z, t). 
z ~ Y - ( t )  z~Y+(t) 

Kinematic conditions of compatibility for one-dimensional plane waves according to the 
Maxwell theorem are written in the form 

d-~- - ~  + u. ~ . (6)  

For weak waves, when the derivatives of the thermodynamic functions have discontinuities, 
while the functions themselves are continuous, from Eq. (6) we obtain 

- - - - u , ~  . ( 6 ' )  

By definition, the surface of discontinuity Z is called an acceleration wave if the field 
of the displacements u and the temperature T possess the following properties on it: 

I) u is smooth and ~ is a continuous function in the neighborhood D of the surface Z; 

II) ~, ~, e,z, ~, and g are continuous in the region X-p and undergo discontinuities 
when crossing Z. 

From I and II and coflditions (6) it follows that 

an [u,:] -- - -  [u], u~ [~,=] . . . . . .  [0]. (7)  

From (1)-(3) and properties I and II, it is seen that the fields q, e, and o undergo 
discontinuities when crossing the front of the acceleration wave. It follows from the equa- 
tions of balance of energy and momentum 

that 

D = - - q , z  + ~, (8)  

pu- :o ,~  § b, (9 )  

[e] = - -  [q,z], 

[o,z] : P ["]. 

By a p p l y i n g  t h e  Maxwel l  t h e o r e m  ( 6 ' )  t o  (10 )  and ( l l ) ,  we o b t a i n  

- -  [&l = p. .  [.1, 

u,~ [el = D]. 

From ( 1 ) - ( 3 )  and t h e  p r o p e r t y  ~ (~ )  = $ (~ )  = X(~) = O, i t  f o l l o w s  t h a t  

(i0) 

(11) 

(12 )  

(13) 

Then, 

q : --cz(O) g(z ,  t) - f o;' (s) gt(z ,  s) ds, 
0 

b = Co# (Z, t) + p (0) # (Z, t) + i ff  (S) 9 '  (Z, S) aS + Xih,z, 
0 

b --  (2x~ + • - -  • + v (o),0, - -  i v' (s) V(z ,  s) ds. 
0 

according to Eqs. (14)-(16) and properties I and II, it follows that 

[q] = -- ~ (0)[gl, 

[6] := (2• + • [i~,d -- • [~J. 

(14) 

( 1 5 )  

( i 6 )  

(17) 

(18) 

(19) 
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Substituting (17)-(19) into (12) and (13), we obtain the system of equations 

{u]o (2• -I z4)} [ii] - -  x~u, [03 : - o, ( 2 o )  

{u~c,,- ~ (0)} [ ~ ] -  • u,,. Iiil : : O. ('21) 

Thus ,  i f  t h e  jumps in  t h e  d e r i v a t i v e  o f  t e m p e r a t u r e  w i t h  r e s p e c t  t o  t i m e  [~ ]@0 and 
a c c e l e r a t i o n s  [u] ~ O, t h e n  we o b t a i n  t h e  e q u a t i o n  f o r  d e t e r m i n i n g  t h e  v e l o c i t i e s  o f  p r o p a g a -  
t i o n  o f  two t h e r m o e l a s t i c  a c c e l e r a t i o n  waves  

c ~ /  -- ( b ~ - t - l + e * )  - -  -I-b'-'==O 
, ,C~ / 

where 

61 

1 {1-1-g* ' b ~ - + [ ( l +  e * q - b ~ ) ' 2 - - 4 b q ~ / z }  ~/2 V ~  -" - 

9] 0 
b-' :- c:_,,,c-i; ~* ::- •215215 q- • 

Let us determine the coefficients of attenuation of the thermoelastic waves. The jumps 
in the second derivatives of temperature and heat flow can be written in the form [2] 

d [~] (23)  2 [~] == u~ [~,,~] + 2 
d t  ' 

1 d l#l (24 )  
[g] : [Q~] = -- un[~,~] - -  u~  d t  ' 

d [o,j ( 2 5 )  
u~ [q,z] . . . .  [q] + d t  

Tak ing  i n t o  a c c o u n t  t h e  r e l a t i o n  ( 1 0 ) ,  d e r i v e d  f rom t h e  law o f  e n e r g y  c o n s e r v a t i o n ,  we 
rewrite (25)  as  

d 
un [el = -- [$] + --~- [q] (26) 

From (15) and (14), it follows that 

; : ~ 6  (;, o + I~ (o)~, (;, o - .,i I~'(~)--~ r (;, ~) ,~ + ~,u,~, 
0 

(27)  

i i ~ = - - - ~ ( 0 ) g ( z ,  t)+ -~s g'(z, s)ds : - - ~ ( O ) ~ ( z ,  O--~.'(O)g(z, t)-- ~"(s)s s)ds. (28) 
0 

From (27)  and ( 2 8 ) ,  we o b t a i n  t h e  jumps in  t h e  s econd  d e r i v a t i v e s  q and 

[e] =. cv [6] + 6(0)[0] + • [u,~], (29)  

[ q ] : :  - -  r  --- ~' (0) [ g ] .  (30)  

S u b s t i t u t i n g  (29)  and (30)  i n t o  (28)  and t a k i n g  i n t o  a c c o u n t  Eqs .  ( 1 7 ) ,  ( 2 3 ) ,  and (24)  
and the Maxwell theorem (6), we find 

d [61 ~' (0) [~1 --u,,~ (0) l~l - -  un• [u,~] + {~ (0) u,~ --- u~c~} [~,z~]. ( 3 1 )  
2u , , cv  d t  - Un 

To eliminate [{i,z] from (31), we use the relation 

[a] = u~ [%~] + 2 dl~] (32)  
d t  ' 

which we rewrite, making use of the law of conservation of momentum (9) and the Maxwell theor- 
em (6): 
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[~] = pu~ [U,z ] -~ 2 d [~]  
dt 

We obtain the derivatives of stresses with respect to time from (3): 

(33) 

b = (2• § x~) h,, - -  •  + ,~ (0) ~ +  i ~' (s) ~(z,  s) ds, 
0 

0 

from which it follows that 

(34) 

(35) 

[b] -- (2• + • [h,,] - -  • DI,  

[~1 -- (2• + • [h.,] - • 151 + ~ (0) D]. 

(36) 

(37) 

Substituting (36) and (37) into (33), we obtain 

d [0'] , d 
{(2• ~- • - -  u~p} ['u,=] = • [~1 - -  ? (0) [~1 - -  2• ~ .4- 2 (2• n -? • ~ [h,~]. 

From (9), (17), and (18), we have 

[h,~]- ~(0) D']-- c~ D]. 
2 

Xtttn ~ t  

U s i n g  ( 2 3 ) ,  ( 3 6 ) ,  and ( 3 9 ) ,  we r e w r i t e  ( 3 1 )  a s  

(2.~ + • - -  u~O \ u~ 
_ _  __ cv'~] d [ ~ ]  Jf 

2 

u. ,2• + • - -  u~,o f (2• + • - u.O 
= 0 .  

(38) 

(39) 

(4o) 

It should be noted that, taking (22) into account, the expression in braces before [~,zz] 
is equal to zero. Therefore, 

dI~] 
dt + 8[~] = 0, (41) 

where the coefficient of attenuation 6 is of the form 

(u--~) 2 1 x,~(0)u~ 
6 = u2n~(0 ) -~ ' (0 )  \ ct / - -  _~ ( 4 2 )  

We write the coefficients of attenuation on the wave fronts in dimensionless form as 

~,~ 

c~ / 

2 A , 

~' (0) a v (0) a N =  ~(0--~) a ; A - -  " F - - - -  
(o) ~ (o) c~ ' ~c~ 

(43) 

Thus, in the framework of the model of linear thermoelasticity, taking account of thermal 
memory [i], the attenuating thermoelastic waves propagate with velocities (22) equal to the 
velocities obtained in the model of thermoelasticity, with account of the relaxation of the 
heat flow [3-5], where accounting for the additional mechanisms of relaxation of the internal 
energy and stresses leads to an increase in the coefficients of attenuation of the waves. 
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Fig. i. Dependence of the attenuation coeffi- 
cients 61,2 on the dimensionless velocity of prop- 
agation of thermal_perturbations b: i) ~i; i') 62 
at E = 0.0114; 2) 61; 2') 62 at E = 0.432; N = i, 
A = -5, r = 0. 

,I 

o ~ I,o y b 

F ig .  2. A t t e n u a t i o n  c o e f f i c i e n t s  6 l ,  2 as  a f u n c t i o n  of  t h e  
dimensionless velocity of propagation of thermal perturba- 
tions b (the Maxwell functions of relaxation): i) 61; i') 
62 for e = 0.0114; 2) 61; 2') 62 for g = 0.432. 

Figure i shows the dependence of the coefficients of attenuation on the dimensionless velocity 
of propagation of thermal perturbations for materials with small (e* = 0.0114, steel) and 
large (g* = 0.432, polyvinylbutyral) coupling parameters (neglecting thermal relaxation of 
stresses r = 0). As is seen from the accompanying relationships, the slow wave is attenuated 
strongly for small velocities of heat propagation, while attenuation of the fast wave is 
close to zero. At high velocities of heat propagation, the fast wave is attenuated strongly, 
while attenuation of the slow wave is very small. In the region where the velocities of 
propagation of heat perturbations and longitudinal elastic_vibrations are close in value 
(b ~ i), both waves have the same attenuation coefficient 61 = 62 = (N - A)/4. It should 
be noted that the attenuation coefficients obtained with the help of the asymptotic approxima- 
tions in [i] and by the method of surfaces of discontinuity in the present paper coincide. 

For the Maxwell functions of relaxation 

( t )  = 
Tq 

exp -- ; [~(t) = "~ 

?(1)= do• exp(--~) 

Eq. (42) assumes the form 

~ n  ~ 2 (v)  N+b  
2b2Tq 

+ :__[_r 
( ' U ~ ) 4  1 2b~T~ I u. ] 4 

I 
(44) 

where N = Zq/~e, F = Zq/zo. 
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The graphs of dependences of the coefficients of attenuation of thermoelastic waves on 
the dimensionless velocity of the thermal perturbations, constructed from Eq. (44), are shown 
in Fig. 2. For the parameter F, we obtain the estimate F = i0 -s (N = i00) for the relaxation 
time of the heat flow ~q = i0 -ll sec [6], the relaxation time of the internal energy ~e = 
i0 -13 sec [7], and the time of the temperature relaxation of stresses t 0 = 10 -7 sec [8]. The 
contribution to the attenuation coefficient from the thermal relaxation of the stresses is 
less than 1% in this case, and we can ignore the second term in (44). Taking account of the 
thermal memory results in an increase in the attenuation of the thermoelastic waves by a fac- 

tin , \ , i u~__!~2_~ ii in comparison with the approximation of generalized thermomechanics tor of L~\ CI/ 
J 

(for the uncoupled case, by a factor of I + N). 

The method of the surfaces of discontinuity, considered in this paper, proved to be ef- 
fective in studying the propagation of thermoelastic waves in media with thermal memory. The 
expressions obtained for the velocities and attenuation of the waves may find application 
in the experimental testing of models of thermoelasticity and the determination of explicit 
expressions for the relaxation functions of the heat flow and internal energy. 

NOTATION 

z, the coordinate normal to the surface of the half-space; t, time; To, temperature of 
the nonstressed state of the half-space; ~(t), relaxation function of the heat flow; B(t), 
relaxation function of the internal energy; u temperature relaxation function of stresses; 
cv = DeE(A0), instantaneous volumetric heat capacity; Zi, linearization coefficients; p, den- 
sity; uz = u, displacements normal to the surface of the half-space; Ozz = a, normal stresses; 
T, temperature; E = U,z, deformation; g = ~T/Sz, temperature gradient. 
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